Publications

Journals

2023

  1. Zhang, Y., Ye, A., Analui, B., Nguyen, P., Sorooshian, S., Hsu, K., and Wang, Y. (2023). Comparing quantile regression forest and mixture density long short-term memory models for probabilistic post-processing of satellite precipitation-driven streamflow simulations, Hydrology and Earth System Science, 27, 4529–4550. https://doi.org/10.5194/hess-27-4529-2023
  2. Wang, Y., Ye, A., Zhang, Y., and Yang, F. (2023). The quantitative attribution of climate change to runoff increase over the Qinghai-Tibetan Plateau. Science of The Total Environment, 165326. https://doi.org/10.1016/j.scitotenv.2023.165326

2022

  1. Zhang, Y., Ye, A., Nguyen, P., Analui, B., Sorooshian, S., and Hsu, K. (2022). QRF4P‐NRT Probabilistic Post‐processing of Near‐real‐time Satellite Precipitation Estimates using Quantile Regression Forests. Water Resources Research, 58(5), e2022WR032117. https://doi.org/10.1029/2022WR032117
  2. He, S., Guo, S., Zhang, J., Liu, Z., Cui, Z., Zhang, Y., and Zheng, Y. (2022). Multi-objective operation of cascade reservoirs based on short-term ensemble streamflow prediction. Journal of Hydrology, 127936. https://doi.org/10.1016/j.jhydrol.2022.127936
  3. Zhu, Y., Ye, A., Zhang, Y. (2022). Changes of total and artificial water bodies in inland China over the past three decades. Journal of Hydrology, 128344. https://doi.org/10.1016/j.jhydrol.2022.128344
  4. Li, Q., Ye, A., Zhang, Y., Zhou, J. (2022). The Peer-To-Peer Type Propagation From Meteorological Drought to Soil Moisture Drought Occurs in Areas With Strong Land-Atmosphere Interaction. Water Resources Research, 58(9), e2022WR032846. https://doi.org/10.1029/2022WR032846
  5. Xu, J., Gao, J., Liu, J., Tu, X., Zhang, Y. (2022). Assessment on spatiotemporal variations for minimum water consumption of vegetation in China based on constraint line method. Journal of Cleaner Production, 134680. https://doi.org/10.1016/j.jclepro.2022.134680

2021

  1. Zhang, Y., Ye, A., Nguyen, P., Analui, B., Sorooshian, S., and Hsu, K. (2021). New insights into error decomposition for precipitation products. Geophysical Research Letters, 48, e2021GL094092. https://doi.org/10.1029/2021GL094092
  2. Zhang, Y., and Ye, A. (2021). Machine Learning for Precipitation Forecasts Postprocessing: Multimodel Comparison and Experimental Investigation. Journal of Hydrometeorology, 22(11), 3065-3085. https://doi.org/10.1175/JHM-D-21-0096.1
  3. Zhang, Y., Ye, A., Nguyen, P., Analui, B., Sorooshian, S., and Hsu, K. (2021). Error Characteristics and Scale Dependence of Current Satellite Precipitation Estimates Products in Hydrological Modeling. Remote Sensing, 13(16), 3061. https://doi.org/10.3390/rs13163061
  4. Zhang, Y., Ye, A., You, J., and Jing, X. (2021). Quantification of human and climate contributions to multi-dimensional hydrological alterations: A case study in the Upper Minjiang River, China. Journal of Geographical Sciences, 31(8), 1102-1122. https://doi.org/10.1007/s11442-021-1887-z
  5. Li, H., Ye, A., Zhang, Y., and Zhao, W. (2021). Intercomparison and evaluation of multisource soil moisture products in China. Earth and Space Science, 8(10), e2021EA001845. https://doi.org/10.1029/2021EA001845

Conferences

  1. Zhang, Y. and Ye, A.: Improve short-term precipitation forecasts using numerical weather prediction model output and machine learning, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4373, https://doi.org/10.5194/egusphere-egu21-4373, 2021. (Oral)
  2. Li, H., Ye, A., Zhang, Y., and Zhao, W.: Evaluation of multiple soil moisture products using in-situ observations over China, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14049, https://doi.org/10.5194/egusphere-egu21-14049, 2021.